Abstract

Carboxylesterase 2 (CES2), which is a member of the serine hydrolase superfamily, is primarily expressed in the human small intestine, where it plays an important role in the metabolism of ester-containing drugs. Therefore, to facilitate continued progress in ester-containing drug development, it is crucial to evaluate how CES2-mediated hydrolysis influences its intestinal permeability characteristics. Human colon carcinoma Caco-2 cells have long been widely used in drug permeability studies as an enterocyte model. However, they are not suitable for ester-containing drug permeability studies due to the fact that Caco-2 cells express CES1 (which is not expressed in human enterocytes) but do not express CES2. To resolve this problem, we created a new Caco-2 cell line carrying the human small intestine-type CES expression profile. We began by introducing short-hairpin RNA for CES1 mRNA knockdown into Caco-2 cells to generate CES1-decifient Caco-2 cells (Caco-2CES1KD cells). Then, we developed Caco-2CES1KD cells that stably express CES2 (CES2/Caco-2CES1KD cells) and their control Mock/Caco-2CES1KD cells. The results of a series of functional expression experiments confirmed that CES2-specific activity, along with CES2 mRNA and protein expression, were clearly detected in our CES2/Caco-2CES1KD cells. Furthermore, we also confirmed that CES2/Caco-2CES1KD cells retained their tight junction formation property as well as their drug efflux transporter functions. Collectively, based on our results clearly showing that CES2/Caco-2CES1KD cells carry the human intestinal-type CES expression profile, while concomitantly retaining their barrier properties, it can be expected that this cell line will provide a promising in vitro model for ester-containing drug permeability studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.