Abstract

The regenerative capacity of hyaline articular cartilage is limited. Thus, lesions of this tissue are a proarthrotic factor, and up to now the conservative treatment of cartilage lesions and arthrosis does not yield satisfying results. Therefore, autologous transplantation of articular chondrocytes is being investigated in a variety of different assays. The aim of our study was to create a mechanically stable cell-matrix implant with viable and active chondrocytes which could serve to fill out articular lesions created in the knees of sheep. For this purpose, articular cartilage was collected from knee lesions, chondrocytes were liberated enzymatically and seeded in culture flasks and cultured till confluency. Cells were then trypsinized and grown on a type I/III collagen matrix (Chondro-Gide, Geistlich Biomaterials, Wolhusen, Switzerland) for 3, 6 and 10 days before being fixed and embedded for electron microscopy by routine methods. Scanning electron microscopy was performed after dehydration in acetone, critical point drying and sputter-coating with gold-paladium. Light microscopically, clusters of chondrocytes can be seen on the surface of the matrix with a few cells growing into the matrix. Transmission electron microscopic photographs yield a rather differentiated chondrocyte-like appearance, which is evidence of a matrix-induced redifferentiation after dedifferentiation during the growth period in the culture flasks. Scanning electron microscopic results show large, flattened chondrocytes without signs of differentiation on plastic, whereas chondrocytes grown on the Chondro-Gide sponge show a more roundish aspect wrapping firmly around the collagen fibrils, exhibiting numerous contacts with the matrix. This cell-matrix biocomposite can now serve to fill out articular cartilage lesions created in the knees of sheep.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call