Abstract

In a virtual reality (VR) space, wearing a head-mounted display can help with the visualization of objects; however, users cannot experience realistic tactile sensations. Recently, several force feedback devices have been developed, including wearable devices that use straight-fiber-type pneumatic muscles and magnetorheological fluids. This allows the devices to render elastic, frictional, and viscous forces during spatially unrestricted movement. Nevertheless, a problem remains in that previous devices could handle many bilateral upper limb movement tasks. Therefore, this study aims to develop a device that can handle movements that interact with both arms. Based on experiments concerning the pushing motion in a VR space, the influence of the pseudo force sense was determined to not be small. In addition, we confirmed that the force sensation presented by this system was more realistic when the robot was operated with both arms than when operated with the right arm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call