Abstract
Previous bone fusion surgery by surgeon has three major difficulties: lack of operation accuracy, surgeon’s overexposure to radioactive contamination, and need of surgeon’s intensive labor during operation. This paper proposes a bilateral teleoperation system for spine bone fusion surgery, BiTESS-II, to overcome those problems. In order to determine design specification of the system, we estimated human bone properties during gimleting and screwing process using the developed data acquisition systems. Based on the spine bone properties, we designed an end effecter, a slave robot and 2 master devices. The slave robot can perform surgical operation to gimlet cortical bone and to insert screws into human spine. Master devices are used to control the pose of the slave robot and to generate haptic information identical to the slave side. We also developed novel force reflection methods without force sensor so that the end effecter can be designed simple and light. The performance of the developed system was verified by experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.