Abstract

Calcified aortic valve disease (CAVD) is the most prevalent valve disease in the elderly in the western world. Targeted pharmacological therapies are limited since the underlying mechanisms of CAVD are not well understood. Appropriate 3D in vitro models could potentially improve our knowledge of the disease. Here, we developed a 3D in vitro heart valve model that resembles the morphology of the valvular extracellular matrix and mimics the mechanical and physiological behavior of the aortic valve fibrosa and spongiosa. We employed cryogenic electrospinning to engineer a bi-layered cryogenic electrospun scaffold (BCES) with defined morphologies that allowed valvular endothelial cell (VEC) adherence and valvular interstitial cell (VIC) ingrowth into the scaffold. Using a self-designed cell culture insert allowed us to establish the valvular co-culture simultaneously by seeding VICs on one side and VECs on the other side of the electrospun scaffold. Proof-of-principle calcification studies were successfully performed using an established osteogenic culture protocol and the here designed 3D in vitro heart valve model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.