Abstract

The development of a Bayesian based adaptive optimisation algorithm for optimising the indoor thermostat settings in a large agile open plan office is presented. Occupant expressions of thermal dissatisfaction and indoor environmental conditions were collected using densely-placed devices over a period of approximately 19 months. A logistic regression model was employed to identify the optimal settings, using regression coefficients that were estimated using Bayesian inference. A series of optimisation scenarios with and without considering the temporal variations of occupant thermal preferences and the spatial deviation of the indoor conditions was designed and implemented to evaluate their potential benefit in terms of overall occupant thermal dissatisfaction reduction. We developed two metrics that were tailored to quantify the overall reduction of thermal dissatisfaction when using optimal air temperature and PMV thermostat settings. These two metrics represented the average reduction of overall indoor thermal dissatisfaction each time a thermostat value was updated. The results showed that it was useful to consider the temporal variations of occupant thermal preferences to reduce the overall occupant thermal dissatisfaction in the office, and that using the same approach on individual zones within the open plan office would lead to further improvements. The case study demonstrated that the optimal adaptive temperature and PMV thermostat settings led to an overall thermal dissatisfaction reduction of 1.47% and 1.21% in the whole office, respectively (as opposed to 0.25% and 0.19% when single fixed temperature-based and PMV-based thermostat settings were used). By applying the proposed adaptive optimisation algorithm on individual zones in the office, the occupant thermal dissatisfaction reductions ranged from 0.88% to 5.17% for PMV-based settings, and from 1.20% to 5.19% for temperature-based settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.