Abstract

Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007–2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.

Highlights

  • Coastal regions, located at the interface between oceanic and terrestrial systems, play a crucial role in earth system functioning [1]

  • We assessed the ability of the coupled model to reproduce the main characteristics of the Marseille coastal area for the two versions of the biogeochemical model, with and without the P cycle

  • Influence of short time scale shelf processes forcing on co-limitation functioning In the evaluation of the representation of short time scale shelf processes in the coupled models, we focused on the year 2008, for which hydrodynamic shelf processes off Marseille were analyzed in detail by Pairaud et al [6]

Read more

Summary

Introduction

Coastal regions, located at the interface between oceanic and terrestrial systems, play a crucial role in earth system functioning [1]. It is clear that coastal systems are locally strongly impacted by human activities, it remains difficult to distinguish between climatic and anthropogenic forcing [1,2,3]. Marseille was chosen for the development of a numerical tool (a chain of models) to assess the raw inputs (from city to sea) and exports (from mid-sea to open sea) of chemical contaminants. This tool was developed based on the coupling of a hydrodynamic model [6], a sedimentary model, a biogeochemical model and a model of chemical contamination.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.