Abstract
The main drawback of tread braking is the rail wheel heating due to friction sliding. Thermal stresses and strains can lead to wheel surface damages while at the same time fast cooling from high temperature can cause microstructural changes, with possible local formation of brittle martensite. Nowadays, the investigation of the wheel and shoe thermomechanical interaction is typically performed using finite element (FE) codes. The paper shows the development, implementation and preliminary validation of a 2D plane FE model for the calculation of the thermal field produced in a tread braked wheel due to drag and stop braking operations. The model includes a structural contact module for the static calculation of the normal and tangential contact pressure at the wheel-shoe interface and a thermal transient module, which computes the wheel temperature considering the friction heat flux and the cooling due to air convection and rail chill.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.