Abstract

In cancer research, study of cell-cell interaction is important to understand tumor initiation, progression, metastasis, and therapeutic resistance. Conventionally, transwell system was adopted and cell proliferation was quantified by end-point bio-assays. The operations are labor-intensive and time-consuming while studying of the dynamic cellular responses of cell-cell interaction. Although impedance measurement was suggested to be a promising technique to monitor cellular responses, electrodes cannot be integrated into the transwell for the measurement purpose. In this work, a 2-chamber culture system incorporated with impedance measurement technique was developed to quantitatively study cell-cell interaction. The chamber was composed of 2 sub-chambers separated with a barrier. By this design, two types of cells could be independently cultured and concurrently monitored under common medium supplied. Cell-cell interaction was demonstrated by aberrant cell proliferation induced by the EGF secreted from the transfected cells cultured on another sub-chamber. Real-time and non-invasive monitoring of cell-cell interaction was successfully demonstrated. This work provides a practical solution for monitoring the dynamic cellular responses of cell-cell interaction during the culture course. It is a reliable and convenient platform and facilitate more quantitative assessments in cancer research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.