Abstract

100 TeV scale Hadron Collider (HC) with a nominal operation field of at least 15 T is being considered for the post-LHC era, which requires using the $Nb_3Sn$ technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T Nb3Sn dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance and reduce the cost. The experience gained during the Nb3Sn magnet R&D is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T Nb3Sn dipole and the steps towards the demonstration model fabrication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call