Abstract
Visualization of the microstructure of hydrogels and the distribution of individual components in a binary polysaccharide hydrogel is often challenging due to its high-water content (up to 99%) and the difficulty in covalent labelling of polysaccharides without important negative effects on the physio-chemical properties of the polysaccharides. The present study investigated the potential use of 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF) to label polysaccharides that carry different functional groups on the polymer backbone, especially anionic functional groups. Agar, konjac glucomannan (KGM), low acyl gellan, and κ- and ι-carrageenan were covalently labelled with DTAF. The advantage of polysaccharide labelling with DTAF was that the labelling could be done in an aqueous environment. The results suggested that DTAF labelling had no impact on the sol-gel transition temperature and gel strength of polysaccharides. Furthermore, DTAF labelled polysaccharides could be stored as a powder at room temperature for three months, except ι-carrageenan, without losing visualization using CLSM and affecting the mechanical strength. Both hydrated and dehydrated forms of binary polysaccharide composite gels were visualized using CLSM. CLSM images enable visibility of component distribution, compatibility of the two polysaccharides and network formation of both polysaccharides of agar:KGM, agar:potato starch, and KGM:potato starch composite gels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.