Abstract

ABSTRACTThe mechanical behaviour and fracture were studied in a Fe–5Mn–2.5Al–0.2C (in wt-%) Medium Mn steel. Metallographic and magnetic measurements confirm the significant influence of the transformation kinetics of the strain-induced martensite on the mechanical properties and strain heterogeneities (Lüders and Portevin-Le Chatelier-like phenomena). An accurate study of isothermal evolutions of the microstructure, associated with atomistic calculations, complements current thermodynamic databases to quantify the nature and volume fraction of phases at different temperatures. A kinetic approach then predicts the influence of annealing conditions on the composition of retained austenite, key parameter for the martensitic transformation kinetics. This supports quantitative modelling of the influence of the intercritical annealing temperature on the ultimate tensile strength for industrial developments of these new grades.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.