Abstract

Animal fats usually contain high amounts of long-chain saturated fatty acids and cholesterol, and plant-based fat analogs have the potential to serve as substitutes for animal fats. However, most fat analog products could not mimic the oil-release behavior of animal fats. Therefore, this study developed 3D-printable emulsified fat analogs utilizing konjac glucomannan and coconut oil and adjusted the oil stability of the fat analog system before and after cooking. Before cooking, the fat analogs showed excellent printing behavior with a homogenous state and no oil release. The raw inks hold intermediate rheological properties so that the printed fat analogs showed acceptable shape stability and surface smoothness during printing. After cooking, the fat analogs experienced significant oil release. In addition, the influences of oil content on the glucomannan-based emulsion gels’ oil release behavior, and rheological and textural properties were investigated. The results showed that the fat analogs with a higher coconut oil content showed a larger amount of released oil, higher oil loss, water loss, and cooking loss, and lower hardness and tensile strength after cooking. The temperature sweep test showed that the glucomannan-based fat analogs formed gels during heating. This study offers a method to develop emulsion plant-based fat analogs with high oil-release and stretchable properties after cooking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.