Abstract

In this study, the processability of polyvinyl alcohol (PVA), a water-soluble polymer, into melt-extruded filaments and then into 3D printed tablets by fused deposition modeling was studied. PVA is semicrystalline with Tg and m.p. of ~45°C and ~190°C, respectively. After screening several plasticizers, sorbitol was selected to enhance melt extrudability of PVA. Carvedilol and haloperidol, 2 basic compounds with pH-dependent solubility, were used as model drugs. Miscibility of the drugs with PVA, with and without added sorbitol as plasticizer, was also tested to determine whether any amorphous solid dispersion was formed that would facilitate rapid and pH-independent dissolution. Finally, the drug release from physical mixtures, crushed extrudates, and printed tablets were determined. Owing to high m.p. and high melt viscosity of PVA, filaments containing 10% and 20% drug required 180°C-190°C for extrusion, which could be reduced to ~150°C by adding 10% sorbitol. The printing temperature of 210°C was, however, required. Miscibility of carvedilol and haloperidol with PVA were, respectively, ~20% and <10%. PVA provided complete drug release from 3D printed tablets with 10% and 20% carvedilol and 60% infill in ~45 min at both pH 2 and 6.8. However, despite relatively rapid dissolution rate, high processing temperature and limited drug-polymer miscibility could be potential development issues with PVA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call