Abstract

Biodegradable stents are considered a promising strategy for the endovascular treatment of cerebrovascular diseases. The visualization of biodegradable stents is of significance during the implantation and long-term follow-up. Endowing biodegradable stents with X-ray radiopacity can overcome the weakness of intrinsic radioparency of polymers. Hence, this work focuses on the development of an entirely X-ray visible biodegradable stent (PCL-KIO3 ) composed of polycaprolactone (PCL) and potassium iodate via physical blending and 3D printing. The in vitro results show that the introduction of potassium iodate makes the 3D-printed PCL stents visualizable under X-ray. So far, there is inadequate study about polymeric stent visualization in vivo. Therefore, PCL-KIO3 stents are implanted into the rabbit carotid artery to evaluate the biosafety and visibility performance. During stent deployment, the visualization of the PCL-KIO3 stent effectively helps to understand the position and dilation status of stents. At 6-month follow-up, the PCL-KIO3 stent could still be observed under X-ray and maintains excellent vessel patency. To sum up, this study demonstrates that PCL-KIO3 stent may provide a robust strategy for biodegradable stent visualization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call