Abstract

The design of turbines used to convert thermal energy into electrical energy in an organic Rankine cycle (ORC) is crucial. A high-speed turbine requires high-performance bearings, which increases turbine manufacturing costs. In this study, a high-efficiency two-stage axial turbine at a low rotational speed was developed, and the ORC performance was presented. We designed a 180-kW axial turbine of 12,000 rpm. To increase turbine efficiency, the number of turbine stages was set to two, and turbine blades were designed to reduce pressure losses. One-dimensional design parameters of blades that minimized the total pressure loss were selected using an in-house code based on a generalized reduced gradient (GRG) nonlinear algorithm. Three-dimensional turbine blade modeling and numerical analysis were performed using commercial software. The total-to-static isentropic efficiency and output of the two-stage axial turbine were predicted to be 85.1% and 176 kW, respectively. ORC performance was assessed using the predicted turbine performance results. Assuming the temperature of the condenser outlet working fluid to be 25 °C, the ORC thermal efficiency and exergy efficiency were found to be 7.40% and 34.49%, respectively. Our findings highlight the applicability of various rotational speeds and number of stages for an axial turbine in an ORC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call