Abstract

Epidermal growth factor receptors (EGFRs) are overexpressed in a wide range of tumors and are attractive candidates to target in targeted therapies. This study aimed to introduce a novel radiolabeled compound, 177Lu-cetuximab-PAMAM G4, for the treatment of EGFR-expressing tumors. In this study, the cetuximab mAb was bound to PAMAM G4 and labeled with 177Lu via DTPA-CHX chelator. The synthesized nanosystem was confirmed by different analyses such as DLS, FT-IR, TEM, and RT-LC. Cell viability of the radioimmunoconjugate was assessed over the EGFR-expressing cell line of SW480. The biodistribution of 177Lu-Cetuximab-PAMAMG4 was determined in different intervals after injection of the radiolabeled compound in normal and tumoral nude mice via scarification and SPECT images. The average size of PAMAM G4 and PAMAM-Cetuximab-DTPA-CHX nanoparticles were 2 and 70nm, respectively. 177Lu-Cetuximab-PAMAMG4 was prepared with radiochemical purity of more than 98%. The survival rates of SW480 cells at 24, 48, and 72h post-treatment with177Lu-Cetuximab-PAMAMG4 (500nM) were 18%, 15%, and 14%, respectively. The biodistribution studies showed a significant accumulation of 177Lu-Cetuximab-PAMAM in the EGFR-expressing tumor. According to the results, this new agent can be considered as an efficient therapeutic complex for tumors expressing EGFR receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call