Abstract

For implementation of AC superconducting equipment, it is imperative to develop low loss cables having highly stable characteristics. Here, newly developed NbTi superconducting cables using a CuSi alloy matrix are of low loss and are very promising as cables for practical application. However, since the CuSi alloy is a new material as a matrix for NbTi superconducting cables, many unknown factors as regards to optimum conditions for the manufacture of long cables, as well as superconducting characteristics are involved. For this new superconducting cable, a long strand (km class) was manufactured as a step for practical application, and a primary twisted cable was fabricated. Using this cable, a coil of the 100 kVA class was fabricated for trial, and its performance characteristic with transport current was evaluated. This coil had no training phenomenon and had a high stabilities. Furthermore, it permitted full AC current transmission of up to DCIc. Upon analysis of the coil loss, the hysteresis loss was smaller than coupling loss, and there was little increase of loss due to the current flow to the coil. Consequently, by using CuSi alloy matrix superconducting cables, it was possible to provide an AC coil of low loss and high stability, and the present cable was found to be promising as a new AC superconducting cable in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.