Abstract

Androgen receptor (AR) antagonists have proven to be useful in the early control of prostate cancer. The aim of this study was to identify and characterize a novel β-amino-carbonyl-based androgen receptor antagonist. Different isomers of the β-amino-carbonyl compounds were obtained by chiral separation. The bioactivities of the isomers were evaluated by AR nuclear translocation, mammalian two-hybrid, competitive receptor binding and cell proliferation assays. The expression of genes downstream of AR was analyzed with real-time PCR. The therapeutic effects on tumor growth in vivo were observed in male SCID mice bearing LNCaP xenografts. Compound 21 was previously identified as an AR modulator by the high-throughput screening of a diverse compound library. In the present study, the two isomers of compound 21, termed compounds 21-1 and 21-2, were characterized as partial AR agonists in terms of androgen-induced AR nuclear translocation, prostate-specific antigen expression and cell proliferation. Further structural modifications led to the discovery of a androgen receptor antagonist (compound 6012), which blocked androgen receptor nuclear translocation, androgen-responsive gene expression and androgen-dependent LNCaP cell proliferation. Four stereoisomers of compound 6012 were isolated, and their bioactivities were assessed. The pharmacological effects of 6012, including AR binding, androgen-induced AR translocation, NH2- and COOH-terminal interaction, growth inhibition of LNCaP cells in vitro and LNCaP xenograft growth in nude mice, were mainly restricted to isomer 6012-4 (1R, 3S). Compound 6012-4 was determined to be a novel androgen receptor antagonist with prostate cancer inhibitory activities comparable to bicalutamide both in vitro and in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.