Abstract

Pellicle or temporary cysts of Pyrodinium bahamense var. compressum (Böhm) Steidinger, Tester & F.J.R. Taylor and their role in bloom dynamics have not yet been adequately characterized and understood. We investigated the role of temperature- and nutrient-mediated stress as factors that could induce pellicle formation in batch cultures. Cellular features and their implications for temporary cyst viability were examined using confocal laser scanning microscopy (CLSM). Our data suggest that temperature change is one of the key factors influencing pellicle formation, preserving viability at low temperature (i.e. 13°C). Hypnocysts (resting cysts) were not observed. During pellicle formation, motile cells generally undergo ecdysis, extrusion of cytoplasmic materials and bacteria, compaction of the nucleus and non-motility. The outermost covering of the temporary cysts shows red autofluorescence and it contains lower concentrations of chlorophyll (chl) a and no detectable chl c. The nuclear region is surrounded by transitional red bodies and other unidentified cellular structures. Temporary cysts can immediately revert back to the motile state upon exposure to optimum conditions. This is accompanied by the expansion of the nuclear region, regeneration of the chloroplasts and enlargement of the cell. Developmental changes during reversal of temporary cysts to motile forms were also observed to cause breaks in the cell covering that could serve as sites for bacterial entry. Though observed in vitro, such behaviour may also be occurring in nature especially as a response to drastic short-lived environmental changes. This is the first detailed report on the characteristics of temporary cysts of P. bahamense var. compressum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.