Abstract

In this study, a thermal hydraulic behavior of the moderator in the CANDU reactor was numerically investigated by using CUPID code. KAERI has been developing a component-scale thermal hydraulics code, CUPID. The aim of the code is multi-dimensional, multi-physics and multi-scale thermal hydraulics analysis. This code adopts a three-dimensional, transient, two-phase and three-field model, and includes physical models and correlations of the interfacial mass, momentum, and energy transfer for the closure. To avoid the complexity to generate computational geometry around the matrix of 440 Calandria tubes, a porous media approach was applied. Flow resistance inside the porous media zone was derived from the empirical correlation of the frictional pressure loss. In order to consider the turbulent jet inflows from the inlet nozzles, the standard k-ε turbulence model was applied. For the grid dependency test, three different grid systems were tested. The moderator test vessel at Stern Laboratories Inc. (SLI) for the validation is a cylinder with a diameter of 2m and a length of 0.2m (a thin “slice” of CANDU-6 Calandria vessel). Since the axial flow is assumed to be invariant, two-dimensional calculation was performed. Vertical profile of the liquid temperature was compared with other calculation results as well as experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.