Abstract

With the advancement of exploration theory and technology, deep and ultra-deep carbonate rocks have gradually become an important new field for the development of oil and gas resources. High-quality carbonate reservoirs have become the focus of attention for oil and gas exploration and research in deep and ultra-deep fields. The Tarim Basin is the largest intracontinental oil and gas basin in China. The thick carbonate strata developed in the Lower Paleozoic are the main layers for oil and gas exploration, and the Ordovician carbonate strata are the main oil and gas producing layers. The predecessors have studied the tectonic evolution, sedimentary background and rock types of the Ordovician in the Tarim Basin. Combined with the analysis of the sedimentary thickness, lithology distribution and seismic profile structure of the Early Ordovician, it is believed that the Lower Ordovician sedimentary period inherited the Cambrian sedimentary pattern and transformed it into a gentle slope sedimentary background with a 'uplift-sag 'pattern, with obvious differentiation. Under the sedimentary background of the gentle slope of the Penglaiba Formation, the three paleo-uplifts of southwestern, northern and central Tarim are inherited geomorphological highs, and the inner gentle slope tidal flat facies is developed. The thickness of the stratum is obviously thinner, and it is mainly developed to represent the tidal flat environment. The periclinal part around the paleo-uplift is the middle gentle slope, which is characterized by dolomite and limestone interbeds. The proportion of granular rocks is high, which is a favorable development area for granular beaches. In this study, the deep drilling cores of the Lower Ordovician Penglaiba Formation in the central Tarim Basin were taken as the key research object, and the lithofacies, reservoir characteristics and dominant reservoir control factors of dolomite reservoirs were systematically analyzed by using macro-micro, qualitative-quantitative reservoir petrology analysis methods. Through research, it is clear that the rock types of the Lower Ordovician Penglaiba Formation in the central Tarim Basin are mainly crystalline dolomite and ( residual ) granular dolomite, and also contain a small amount of limestone, siliceous rocks and transitional rocks. There are various types of reservoir space, mainly including non-fabric selective dissolution pores, intercrystalline pores and various fractures. Combined with previous studies on the genesis and diagenetic evolution of the Lower Ordovician dolomite in the Tarim Basin, it is considered that the development of high-quality dolomite reservoirs in the Lower Ordovician Penglaiba Formation in the central part of Tarim Basin is controlled by many factors. It is the result of a combination of favorable sedimentary facies belts, short-term sea-level changes, exposure and dissolution, early dolomitization, and late tectonic hydrothermal adjustment and transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call