Abstract

In this paper, we design a mobile robot platform, which employs a fully autonomous mechanical structure and electrical control system. Two driving wheels realize flexible steering movement with four universal wheels. A variety of sensors are built on the mobile robot platform, including the Inertial Measurement Unit (IMU) used to establish the inertial navigation coordinate system and the Velodyne’s Puck lidar sensor (VLP-16) used to obtain the three-dimensional (3D) point cloud information of the environment. Then, we build a software control architecture based on the Robot Operating System (ROS), using multi-node communication to perform positioning, environment perception, dynamic obstacle avoidance, path planning and motion control. Furthermore, a method of actively exploring the environment and constructing a map is proposed, using multi-path evaluation for real-time path planning and obstacle avoidance. In the end, we conduct autonomous exploration experiments to verify the performance of the designed mobile robot platform in indoor multi-obstacle scenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call