Abstract

BackgroundPatient safety in the intensive care unit (ICU) is one of the most critical issues, and unplanned extubation (UE) is considered the most adverse event for patient safety. Prevention and early detection of such an event is an essential but difficult component of quality care.ObjectiveThis study aimed to develop and validate prediction models for UE in ICU patients using machine learning.MethodsThis study was conducted in an academic tertiary hospital in Seoul, Republic of Korea. The hospital had approximately 2000 inpatient beds and 120 ICU beds. As of January 2019, the hospital had approximately 9000 outpatients on a daily basis. The number of annual ICU admissions was approximately 10,000. We conducted a retrospective study between January 1, 2010, and December 31, 2018. A total of 6914 extubation cases were included. We developed a UE prediction model using machine learning algorithms, which included random forest (RF), logistic regression (LR), artificial neural network (ANN), and support vector machine (SVM). For evaluating the model’s performance, we used the area under the receiver operating characteristic curve (AUROC). The sensitivity, specificity, positive predictive value, negative predictive value, and F1 score were also determined for each model. For performance evaluation, we also used a calibration curve, the Brier score, and the integrated calibration index (ICI) to compare different models. The potential clinical usefulness of the best model at the best threshold was assessed through a net benefit approach using a decision curve.ResultsAmong the 6914 extubation cases, 248 underwent UE. In the UE group, there were more males than females, higher use of physical restraints, and fewer surgeries. The incidence of UE was higher during the night shift as compared to the planned extubation group. The rate of reintubation within 24 hours and hospital mortality were higher in the UE group. The UE prediction algorithm was developed, and the AUROC for RF was 0.787, for LR was 0.762, for ANN was 0.763, and for SVM was 0.740.ConclusionsWe successfully developed and validated machine learning–based prediction models to predict UE in ICU patients using electronic health record data. The best AUROC was 0.787 and the sensitivity was 0.949, which was obtained using the RF algorithm. The RF model was well-calibrated, and the Brier score and ICI were 0.129 and 0.048, respectively. The proposed prediction model uses widely available variables to limit the additional workload on the clinician. Further, this evaluation suggests that the model holds potential for clinical usefulness.

Highlights

  • Patient safety in the intensive care unit (ICU) is a critical issue

  • We successfully developed and validated machine learning–based prediction models to predict unplanned extubation (UE) in ICU patients using electronic health record data

  • The proposed prediction model uses widely available variables to limit the additional workload on the clinician

Read more

Summary

Introduction

Patient safety in the intensive care unit (ICU) is a critical issue. Medical errors and adverse events can significantly impact patient outcomes [1]. Medical errors are a common occurrence in the ICU and airway-related accidents are the most frequent [2]. Adverse events related to airway and mechanical ventilation, such as unplanned extubation (UE), may lead to high rates of morbidity and mortality [3]. UE is a critical adverse event in the ICU, necessitating immediate action and treatment by the medical staff. UE incidence rates range from 0.5 to 35.8 per 100 ventilated patients [4,5]. Patient safety in the intensive care unit (ICU) is one of the most critical issues, and unplanned extubation (UE) is considered the most adverse event for patient safety. Prevention and early detection of such an event is an essential but difficult component of quality care

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.