Abstract

BackgroundRecent advances in the diversified anti-diabetic drugs have appeared in the startling increase in the count of poisoning cases. The epidemics of diabetes mellitus are increasing; hence, the no. of anti-diabetic drug users raised by 42.9%. The use of glimepiride raised to 24%. As the toxicity and drug cases are also escalating with increasing epidemics of diabetes mellitus, a novel gas chromatography-mass spectrometry (GC-MS) method for detecting glimepiride in biological matrices is developed.ResultsLiquid-liquid extraction method was employed by using 1-butanol: hexane (50:50, v/v) under an alkaline medium, and then back extraction was done via acetic acid. Distinct derivatization techniques were employed for the sample preparation for GC-MS analysis, i.e., silylation and acylation. Derivatization approaches were optimized under different parameters, i.e., reaction temperature and reaction time. N-Methyl-N-(trimethylsilyl) trifluoroacetamide [MSTFA] was found to be the best sound derivatization reagent for the GC-MS analysis of glimepiride. Total ion current (TIC) mode was selected for the monitoring of ions of trimethylsilyl (TMS) derivative of glimepiride with an m/z ratio of 256. Distinct parameters like specificity, carryover, stability, precision, and accuracy were evaluated for validating the identification method. The GC-MS method is found to be linear and illustrated within the range 500 to 2500 ng/ml with the value of R2 (coefficient of determination) at 0.9924. The stability of the extracted and derivatized glimepiride was accessed with regard to processed/extracted sample conditions and autosampler conditions, respectively. Accuracy at each concentration level was within the + 15% of the nominal concentration. Precision (%) for the interday and intraday analysis was found to be in the respectable spectrum.ConclusionHenceforth, the proposed GC-MS method can be employed for the determination of glimepiride in biological matrices.

Highlights

  • Recent advances in the diversified anti-diabetic drugs have appeared in the startling increase in the count of poisoning cases

  • Other chemicals and reagents including butanol, hexane, acetic acid, methanol, toluene, and dimethyldichlorosilane were of analytical grade

  • Extraction procedure As no extraction method is available for the glimepiride from the biological matrices, we have developed these two extraction procedures

Read more

Summary

Methods

Chemicals and reagents Glimepiride [1-((p-(2-(3-ethyl-4-methyl-2-oxo-3-pyrroline-1-carboxamido)ethyl)-phenyl)-sulfonyl)-3-(trans-4-methylcyclohexyl)urea], bistrimethylsilyltrifluoroacetamide [BSTFA], N-methyl-bis(trifluoroacetamide) [MBTFA], and N-methyl-N-(trimethylsilyl)trifluoroacetamide [MSTFA] were of GC-grade and supplied by TCI chemicals (pvt. ltd India). Methylcyclohexyl)urea], bistrimethylsilyltrifluoroacetamide [BSTFA], N-methyl-bis(trifluoroacetamide) [MBTFA], and N-methyl-N-(trimethylsilyl)trifluoroacetamide [MSTFA] were of GC-grade and supplied by TCI chemicals Other chemicals and reagents including butanol, hexane, acetic acid, methanol, toluene, and dimethyldichlorosilane were of analytical grade. Preparation of standard and working solutions Glimepiride was weighed accurately to make 1000 μg/ ml and 500 μg/ml stock solution. Methanol was used as the solvent system for the standard stock solution. Working solutions of 2500 ng/ml, 2000 ng/ml, 1500 ng/ml, 1000 ng/ml, and 500 ng/ml were prepared by serial dilutions of the standard stock solution using methanol. Working and stock solutions were conserved at 4 °C

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.