Abstract

BackgroundIn the current study, a simple, improved, precise, rapid, and accurate reverse phase liquid chromatographic method was produced for the estimation of dalfampridine in bulk and tablet dosage form which is a potassium channel blocker used for the treatment of multiple sclerosis (MS). The separation of dalfampridine was achieved isocratically on a C18 column (250 × 4.6 mm, 5 μm) using (0.1% v/v) buffer pH 3.0 ± 0.05 adjusted with diluted orthophosphoric acid (OPA) and acetonitrile (ACN) in the ratio of 60:40% (v/v) as a mobile phase, at a flow rate of 0.5 mL/min, and column temperature of 40 °C. HPLC grade methanol as diluents was used. Five microliters of the standard solution of the drug was injected, and the eluted analytes were detected at 262 nm.ResultsDalfampridine was eluted at 4.5 min with a run time of 10 min. Linearity in the method was measured in the concentration range of 25–75 ppm with a correlation coefficient of 0.999. Limit of detection and limit of quantitation were found to be 0.711 μg/mL and 2.154 μg/mL, respectively. Dalfampridine was subjected for forced degradation stability study in conditions of thermal, acid, alkali, and oxidation and photo-degradation condition. The degradants were well resolved from the dalfampridine main peak. Validation of the developed method is carried as per USFDA and ICH guidelines.ConclusionThe results of the analysis prove that the method is simple, improved, precise, accurate, and rapid for estimating the content of dalfampridine in bulk drug and tablet dosage form and can be applied for routine analysis.

Highlights

  • In the current study, a simple, improved, precise, rapid, and accurate reverse phase liquid chromatographic method was produced for the estimation of dalfampridine in bulk and tablet dosage form which is a potassium channel blocker used for the treatment of multiple sclerosis (MS)

  • Instrumentation Waters HPLC (Separation module 2695) chromatographic system equipped with PDA-detector 2487 Xterra C18 (250 × 4.6 mm, 5 μL) thermostatic column compartment connected with Empower-3 software, consisting of Preparation of standard solution (50 ppm) Accurately weighed 50 mg of dalfampridine as working standard was transferred to a volumetric flask of 50 mL followed by 30 mL of methanol and sonicated

  • The buffer was adjusted at pH 3.0 with dilute orthophosphoric acid (OPA) and ACN to achieve good satisfactory results at a flow rate of 0.5 mL/min measured at a detection of 262 nm

Read more

Summary

Introduction

A simple, improved, precise, rapid, and accurate reverse phase liquid chromatographic method was produced for the estimation of dalfampridine in bulk and tablet dosage form which is a potassium channel blocker used for the treatment of multiple sclerosis (MS). HPLC grade methanol as diluents was used. Shimadzu-(ATX 224)-digital weighing balance, BT ultra sonicator 48, digital systronic pH meter (802), and Millipore vacuum filter pump (XI 5522050) were used for the method development. Materials and reagents The pharmaceutical grade working standards of dalfampridine were obtained as a gift from Enaltec Pharma. Dalfampridine tablet formulation (10 mg) was used of brand AMPYRA, marketed by Accorda Therapeutics Inc. The HPLC grade triethylamine, OPA, methanol, and ACN were procured from SD Fine Chem., Mumbai, India, for the present study. The Milli-Q water procured from Mumbai, India, was used for the analysis

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.