Abstract

Exenatide is a synthetic glucagon-like peptide 1 analog, widely used in the management of type 2 diabetes mellitus. The stability of pharmaceutical products is significantly impacted by various environmental stress conditions. The present study reports the development of a validated reverse-phase high-performance liquid chromatography (RP-HPLC) stability-indicating method for the identification of force degradation products (DPs) of synthetic glucagon-like peptide-1 analog Exenatide using UHPLC-Orbitrap fusionTM mass spectrometer. Force degradation studies were performed by subjecting Exenatide to various stress conditions, such as hydrolytic, oxidative, photolytic and thermal to investigate the stability indicating ability of the method. Significant degradation was observed during acidic, oxidative, photolytic and thermal stress conditions. Exenatide and its major DPs identification and characterization were demonstrated by employing LC-HRMS and MS/MS method. In total, five major stress DPs were characterized, and their fragmentation pathway was proposed using MS/MS studies. Finally, the proposed RP-HPLC method was validated as per ICH guidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.