Abstract

Trace antiviral drug contamination in aquatic ecosystems is becoming a significant environmental concern that requires an urgent efficient determination method. Here we developed sensitive and robust multi-residue determination methods to simultaneously extract and analyze 9 commonly used antiviral drugs (abacavir, zidovudine, efavirenz, nevirapine, ritonavir, lopinavir, lamivudine, telbivudine and entecavir) in surface water, wastewater, sediment, and sludge. Water samples were extracted with solid-phase extraction (SPE) technique using tandem hydrophilic–lipophilic balance and graphitized carbon black cartridges, while sediment and sludge samples were extracted using QuEChERS (quick, easy, cheap, effective, rugged, and safe) method. The extraction conditions of SPE (pH and cartridge type) and QuEChERS (acetic acid content, salts reagent, and purification sorbent) methods were carefully optimized. We observed that under optimum conditions, the method quantification limits of the 9 antiviral drugs in water and solid samples ranged from 0.05 to 19.23 ng L−1 and from 0.02 to 7.38 ng g−1, respectively. For environmental samples spiking 3 different concentrations, the recovery values for the most targeted antiviral drugs ranged from 70 to 130%, except for efavirenz. All targeted antiviral drugs were detected in wastewater samples except for entecavir. We also found abacavir, efavirenz, ritonavir, lopinavir, and telbivudine in sediment and sludge samples. Notably, telbivudine was identified in all environmental matrices, with a high concentration of 127 ng L−1 and 222 ng g−1 in water and sediment samples, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call