Abstract

BackgroundFor large scale epidemiological studies clinical assessments and radiographs can be impractical and expensive to apply to more than just a sample of the population examined. The study objectives were to develop and validate two novel instruments for self-reported knee malalignment and foot rotation suitable for use in questionnaire studies of knee pain and osteoarthritis.MethodsTwo sets of line drawings were developed using similar methodology. Each instrument consisted of an explanatory question followed by a set of drawings showing straight alignment, then two each at 7.5° angulation and 15° angulation in the varus/valgus (knee) and inward/outward (foot) directions. Forty one participants undertaking a community study completed the instruments on two occasions. Participants were assessed once by a blinded expert clinical observer with demonstrated excellent reproducibility. Validity was assessed by sensitivity, specificity and likelihood ratio (LR) using the observer as the reference standard. Reliability was assessed using weighted kappa (κ). Knee malalignment was measured on 400 knee radiographs. General linear model was used to assess for the presence of a linear increase in knee alignment angle (measured medially) from self-reported severe varus to mild varus, straight, mild valgus and severe valgus deformity.ResultsObserver reproducibility (κ) was 0.89 and 0.81 for the knee malalignment and foot rotation instruments respectively. Self-reported participant reproducibility was also good for the knee (κ 0.73) and foot (κ 0.87) instruments. Validity was excellent for the knee malalignment instrument, with a sensitivity of 0.74 (95%CI 0.54, 0.93) and specificity of 0.97 (95%CI 0.94, 1.00). Similarly the foot rotation instrument was also found to have high sensitivity (0.92, 95%CI 0.83, 1.01) and specificity (0.96, 95%CI 0.93, 1.00). The knee alignment angle increased progressively from self reported severe varus to mild varus, straight, mild valgus and severe valgus knee malalignment (ptrend <0.001).ConclusionsThe two novel instruments appear to provide a valid and reliable assessment of self-reported knee malalignment and foot rotation, and may have a practical use in epidemiological studies.

Highlights

  • For large scale epidemiological studies clinical assessments and radiographs can be impractical and expensive to apply to more than just a sample of the population examined

  • The impracticalities of a weight-bearing full-length leg radiograph and the comparative expense and inconvenience of knee radiographs remains an obstacle for some large scale epidemiological studies and clinical assessment of a standing participant is a practical alternative

  • Development of the self-report instruments Two novel line drawings with various degrees of knee malalignment and foot rotation were created by the Department of Academic Rheumatology using similar methodologies

Read more

Summary

Introduction

For large scale epidemiological studies clinical assessments and radiographs can be impractical and expensive to apply to more than just a sample of the population examined. The study objectives were to develop and validate two novel instruments for self-reported knee malalignment and foot rotation suitable for use in questionnaire studies of knee pain and osteoarthritis. The current "gold standard" for determining knee malalignment is weight-bearing full-length leg radiographs [1,5]. The anatomic axis measured from a standard weight-bearing knee radiograph is a more readily undertaken substitute for measuring the mechanical axis compared to a full limb radiograph [6,7]. The impracticalities of a weight-bearing full-length leg radiograph and the comparative expense and inconvenience of knee radiographs remains an obstacle for some large scale epidemiological studies and clinical assessment of a standing participant is a practical alternative. Simple line-drawings, suitable for self-reported questionnaires, have been used successfully for self-reporting of bodily pain location [10] and for self-reported assessment of physical characteristics such as hallux valgus [11] and self-reported Heberden's and Bouchard's nodes [12]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call