Abstract

Diffused light imaging techniques, such as near-infrared optical tomography (NIROT), require a stable platform for testing and validation that imitates tissue optical properties. The aim of this work was to build a robust, but flexible liquid phantom for BORL time-domain NIROT system Pioneer. The phantom was designed to assess penetration depth and resolution of the system, and to provide a heterogeneous inner structure that can be changed in controllable manner with adjustable optical properties. We used only in-house produced 3D-printed elements and mechanics of a budget 3D-printer to build the phantom, and managed to keep the overall costs below $500. We achieved stable and repeatable movement of an arbitrary structure in 3+1 degree of freedom inside the phantom and demonstrated its performance in a series of tests. Thus, we presented a universal and cost-effective solution for testing NIROT, that can be easily customised to various systems or testing paradigms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call