Abstract

Accurate risk assessment of an individuals’ propensity to develop cardiovascular diseases (CVDs) is crucial for the prevention of these conditions. Numerous published risk prediction models used for CVD risk assessment are based on conventional risk factors and include only a limited number of biomarkers. The addition of novel biomarkers can boost the discriminative ability of risk prediction models for CVDs with different pathogenesis. The present study reports the development of risk prediction models for a range of heterogeneous CVDs, including coronary artery disease (CAD), stroke, deep vein thrombosis (DVT), and abdominal aortic aneurysm (AAA), as well as for Type 2 diabetes mellitus (DM2), a major CVD risk factor. In addition to conventional risk factors, the models incorporate various blood biomarkers and comorbidities to improve both individual and population stratification. An automatic variable selection approach was developed to generate the best set of explanatory variables for each model from the initial panel of risk factors. In total, up to 254,220 UK Biobank participants (ranging from 215,269 to 254,220 for different CVDs and DM2) were included in the analyses. The derived prediction models utilizing Cox proportional hazards regression achieved consistent discrimination performance (C-index) for all diseases: CAD, 0.794 (95% CI, 0.787–0.801); DM2, 0.909 (95% CI, 0.903–0.916); stroke, 0.778 (95% CI, 0.756–0.801); DVT, 0.743 (95% CI, 0.737–0.749); and AAA, 0.893 (95% CI, 0.874–0.912). When validated on various subpopulations, they demonstrated higher discrimination in healthier and middle-age individuals. In general, calibration of a five-year risk of developing the CVDs and DM2 demonstrated incremental overestimation of disease-related conditions amongst the highest decile of risk probabilities. In summary, the risk prediction models described were validated with high discrimination and good calibration for several CVDs and DM2. These models incorporate multiple shared predictor variables and may be integrated into a single platform to enhance clinical stratification to impact health outcomes.

Highlights

  • Cardiovascular diseases (CVDs) include a range of chronic diseases that impair cardiac and vascular function, which continues to be the leading cause of death in the United States (US)

  • The present study reports the development of risk prediction models for a range of heterogeneous CVDs, including coronary artery disease (CAD), stroke, deep vein thrombosis (DVT), and abdominal aortic aneurysm (AAA), as well as for Type 2 diabetes mellitus (DM2), a major CVD risk factor

  • The discriminative ability of all Cox Proportional Hazard (PH) cardiometabolic diseases (CMDs) models estimated by five-fold cross-validation varied between the diseases with the highest and lowest C-indexes for DM2 and deep venous thrombosis (DVT), respectively

Read more

Summary

Introduction

Cardiovascular diseases (CVDs) include a range of chronic diseases that impair cardiac and vascular function, which continues to be the leading cause of death in the United States (US). It is projected that over 45% of the US population will suffer from one or more CVDs by 2035 [1]. As with any chronic condition, appropriate prevention and selective treatment of CVDs are the most effective approaches to reduce their clinical and financial impact. Accurate risk assessment of an individual’s propensity to develop CVDs is essential for personalized health care and primary prevention of these conditions. The contribution of various biomarkers to the risk of CVDs with different pathogenesis is poorly understood

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call