Abstract
Several scores predicting mortality at the emergency department have been developed. However, all with shortcomings either simple and applicable in a clinical setting, with poor performance, or advanced, with high performance, but clinically difficult to implement. This study aimed to explore if machine learning algorithms could predict all-cause short- and long-term mortality based on the routine blood test collected at admission. Methods: We analyzed data from a retrospective cohort study, including patients > 18 years admitted to the Emergency Department (ED) of Copenhagen University Hospital Hvidovre, Denmark between November 2013 and March 2017. The primary outcomes were 3-, 10-, 30-, and 365-day mortality after admission. PyCaret, an automated machine learning library, was used to evaluate the predictive performance of fifteen machine learning algorithms using the area under the receiver operating characteristic curve (AUC). Results: Data from 48,841 admissions were analyzed, of these 34,190 (70%) were randomly divided into training data, and 14,651 (30%) were in test data. Eight machine learning algorithms achieved very good to excellent results of AUC on test data in a of range 0.85–0.93. In prediction of short-term mortality, lactate dehydrogenase (LDH), leukocyte counts and differentials, Blood urea nitrogen (BUN) and mean corpuscular hemoglobin concentration (MCHC) were the best predictors, whereas prediction of long-term mortality was favored by age, LDH, soluble urokinase plasminogen activator receptor (suPAR), albumin, and blood urea nitrogen (BUN). Conclusion: The findings suggest that measures of biomarkers taken from one blood sample during admission to the ED can identify patients at high risk of short-and long-term mortality following emergency admissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Scientific Reports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.