Abstract
This paper presents a novel modelling technique to compute the interaction between an 8x4 off-road truck and gravelly soil (sand with gravel soil). The off-road truck tire size 315/80R22.5 is modelled using the Finite Element Analysis (FEA) technique and validated using manufacturer-provided data in static and dynamic responses. The gravelly soil is modelled using Smoothed-Particle Hydrodynamics (SPH) technique and calibrated against physical measurements using pressure-sinkage and direct shear-strength tests. The tire-gravelly soil interaction is captured using the node symmetric node to segment with edge treatment algorithm deployed for interaction between FEA and SPH elements. The model setup consists of four tires presenting the four axles of the truck, the first tire is a free-rolling steering tire, the second and third tires are driven tires and the fourth tire is a free-rolling push tire. The truck tires-gravelly soil interaction is computed and validated against physical measurements performed in Göteborg, Sweden. The effect of gravelly soil compaction and truck loading on the tire performance is discussed and investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.