Abstract

In this study, the analysis method for thermomechanical properties of plain-woven composites is developed, and applied to thermoelastoviscoplastic analysis of plain-woven glass fiber-reinforced plastic (GFRP) composites. For this, a time-dependent constitutive equation depending on temperature for matrix materials is incorporated into the micro/meso/macro-scale thermo-elastic homogenization method for plain-woven composites developed by our research group. This method enables us to analyze thermoelastoviscoplastic properties in not only fiber bundles but also fibers and matrix materials in fiber bundles, as well as macroscopic thermal properties. This method is then applied to the thermal expansion analysis of a plain-woven GFRP composite subjected to a macroscopic temperature change from 25°C to 80°C before it is cooled to 25°C. Comparing the analysis results with experimental data, we validate the present method. It is also shown that the present method can evaluate themal residual stress and strain in the composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call