Abstract
BACKGROUND: The incidence of diabetes mellitus (DM) both in the Russian Federation and in the world has been steadily increasing for several decades. Stable population growth and current epidemiological characteristics of DM lead to enormous economic costs and significant social losses throughout the world. The disease often progresses with the development of specific complications, while significantly increasing the likelihood of hospitalization. The creation and inference of a machine learning model for predicting hospitalizations of patients with DM to an inpatient medical facility will make it possible to personalize the provision of medical care and optimize the load on the entire healthcare system.AIM: Development and validation of models for predicting unplanned hospitalizations of patients with diabetes due to the disease itself and its complications using machine learning algorithms and data from real clinical practice.MATERIALS AND METHODS: 170,141 depersonalized electronic health records of 23,742 diabetic patients were included in the study. Anamnestic, constitutional, clinical, instrumental and laboratory data, widely used in routine medical practice, were considered as potential predictors, a total of 33 signs. Logistic regression (LR), gradient boosting methods (LightGBM, XGBoost, CatBoost), decision tree-based methods (RandomForest and ExtraTrees), and a neural network-based algorithm (Multi-layer Perceptron) were compared. External validation was performed on the data of the separate region of Russian Federation.RESULTS: The best results and stability to external validation data were shown by the LightGBM model with an AUC of 0.818 (95% CI 0.802–0.834) in internal testing and 0.802 (95% CI 0.773–0.832) in external validation.CONCLUSION: The metrics of the best model were superior to previously published studies. The results of external validation showed the relative stability of the model to new data from another region, that reflects the possibility of the model’s application in real clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.