Abstract

Di-2-pyridylketone isonicotinoyl hydrazone (PKIH) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) novel iron chelators which possess marked anti-cancer activity in vivo. However, further progress in the development of these drug candidates requires precise and convenient methods for their qualitative and quantitative analysis. The aim of this study was to develop and validate HPLC methods suitable for the purity and stability evaluation of Dp44mT and PKIH and subsequently to employ these methods in stress tests addressing their chemical stability. The chromatographic analyses of both chelators were accomplished via HPLC using a Discovery HSF5 column (25 cm × 4 mm; 5 μm). For separation of Dp44mT and its synthetic precursors, the mobile phase was composed of a mixture of 2 mM EDTA and acetonitrile in a ratio 60:40 (v/v). A desirable separation of PKIH from its synthetic precursors was achieved with a mixture of 0.01 M phosphate buffer (pH 3.0), methanol and acetonitrile in a ratio of 65:21:14 (v/v/v) with the addition of EDTA (2 mM). In order to confirm the utility of these HPLC methods for measuring these drugs and their stability, Dp44mT and PKIH were subjected to chemical stress tests. These experiments showed that Dp44mT was relatively stable against hydrolytic degradation, but quite sensitive to oxidation. On the other hand, PKIH was slightly sensitive to acid-catalyzed hydrolysis, but it was relatively stable under other tested conditions. Furthermore, these studies confirmed the utility of these methods not only for appropriate evaluation of purity but also stability. The analytical methods developed and validated in this study, as well as the basic data on the chemical stability, should further support the development of both these novel anti-cancer chelators as promising drug candidates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.