Abstract

BackgroundZebrafish has emerged as a potential animal model of acute convulsion for early screening of antiepileptic agents. There is a need for alternative chronic zebrafish models of epilepsy with more correlation to the clinical condition. New MethodAdult zebrafish were repeatedly exposed to subeffective concentrations of pentylenetetrazole (PTZ), until appearance to tonic-clonic seizures, considered as kindled. Valproic acid (VPA) exposure was given during kindling and in kindled fish in 2 different groups. The neurotransmitters level and expression of the genes associated with kindling were studied in the fish brain. ResultsThere was an increase in seizure severity score at 1.25 mM concentration of PTZ, and 66.66 % of fish achieved kindling after 22 days’ exposure. A marked increase in c-fos, crebbpa and crebbpbexpression, and glutamate/GABA level was observed in the brain of kindled fish. VPA inhibited the induction of PTZ-mediated kindling and reduced seizure severity in kindled fish. Comparison with existing methodIn contrast to an existing adult zebrafish kindling method, the present protocol is of longer duration, with more similarity to clinical epilepsy. Moreover, the induction of kindling involves a simple non-invasive technique without the use of anesthesia. The protocol can be used for evaluation of both antiepileptic and antiepileptogenic agents. ConclusionRepeated exposure of 1.25 mM PTZ induced kindling in zebrafish, altering the brain neurotransmitter levels and gene expression. Inhibition of kindling induction and decrease in seizures in normal and kindled fish, respectively by VPA validated application of the model for preclinical testing of agents against epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.