Abstract
The aim of this study was to develop an ultrasound-based nomogram to improve the diagnostic accuracy of the identification of malignant thyroid nodules. A total of 1675 histologically proven thyroid nodules (1169 benign, 506 malignant) were included in this study. The nodules were grouped into the training dataset (n = 700), internal validation dataset (n = 479), or external validation dataset (n = 496). The grayscale ultrasound features included the nodule size, shape, aspect ratio, echogenicity, margins, and calcification pattern. We applied least absolute shrinkage and selection operator (lasso) regression to select the strongest features for the nomogram. Nomogram discrimination (area under the receiver operating characteristic curve, AUC) and calibration were assessed. The nomogram was subjected to bootstrapping validation (1000 bootstrap resamples) to calculate a mean AUC and 95% confidence interval (CI). The nomogram showed good discrimination in the training dataset, with an AUC of 0.936 (95% CI: 0.918-0.953) and good calibration. Application of the nomogram to the internal validation dataset also resulted in good discrimination (AUC: 0.935; 95% CI, 0.915-0.954) and good calibration. The model tested in an external validation dataset demonstrated a lower AUC of 0.782 (95% CI: 0.776-0.789). This ultrasound-based nomogram can be used to quantify the probability of malignant thyroid nodules. • Ultrasound examination is helpful in the differential diagnosis of malignant and benign thyroid nodules. • However, ultrasound accuracy relies heavily on examiner experience. • A less subjective diagnostic model is desired, and the developed nomogram for thyroid nodules showed good discrimination and good calibration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.