Abstract

Bisphenol-A, a synthetic organic compound with estrogen mimicking properties, may enter bloodstream through either dermal contact or ingestion. Probiotic bacterial uptake of bisphenol can play a major protective role against its adverse health effects. In this paper, a method for the quantification of BPA in bacterial cells of L. lactis and of BPA and its potential metabolites 4-hydroxybenzoic Acid, 4-hydroxyacetophenone and hydroquinone in the culture medium is described. Extraction of BPA from the cells was performed using methanol–H2O/TFA (0.08%) (5:1 v/v) followed by SPE. Culture medium was centrifuged and filtered through a 0.45 μm syringe filter. Analysis was conducted in a Nucleosil column, using a gradient of A (95:5 v/v H2O: ACN) and B (5:95 v/v H2O: ACN, containing TFA, pH 2), with a flow rate of 0.5 mL/min. Calibration curves (0.5–600 μg/mL) were constructed using 4-n-Octylphenol as internal standard (1 > R2 > 0.994). Limit of Detection (LOD) and Limit of Quantification (LOQ) values ranged between 0.23 to 4.99 μg/mL and 0.69 to 15.1 μg/mL respectively. A 24 h administration experiment revealed a decline in BPA concentration in the culture media up to 90.27% while the BPA photodegradation levels were low. Our results demonstrate that uptake and possible metabolism of BPA in L. lactis cells facilitates its removal.

Highlights

  • Bisphenol-A is the organic synthetic compound 4, 40 -Isopropylidenediphenol, which is widely used in thermal paper industry and as a component of synthetic plastic due to its mechanical and extreme-temperature resistance [1]

  • 0.08% (v/v) Trifluoroacetic acid (TFA) after centrifugation aimed to increase the solubility of BPA due to further dilution

  • Analyte peaks of HQ, hydroxy benzoic acid (HBA), hydroxy acetophenone (HAP), BPA and internal standard OP are shown with a retention time (Rt) of 10.671, 12.728, 15.579, 26.241 and 40.771 min respectively

Read more

Summary

Introduction

Bisphenol-A is the organic synthetic compound 4, 40 -Isopropylidenediphenol, which is widely used in thermal paper industry and as a component of synthetic plastic (vinyl-chloride) due to its mechanical and extreme-temperature resistance [1]. BPA, was found to exhibit estrogenic properties, arising from its structural resemblance to the human 17β-estradiol [2], it is referred to as xenoestrogen or endocrine disruptor. The main routes of human exposure to BPA are the consumption of food in BPA containing packages [3] and through dermal contact with BPA rich materials [4]. BPA is mainly metabolized in humans to BPA-glucuronide through the hepatic glucuronide transferase and excreted from the body [5,6]. A percentage of BPA, referred to as “free” or “active” BPA, remains in the blood circulation for up to a week and can interfere with endogenous biological processes [4]. Due to its estrogenic and genotoxic effects and its wide

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.