Abstract
This study used electrocardiogram data in conjunction with artificial intelligence methods as a noninvasive tool for detecting peripartum cardiomyopathy. This study aimed to assess the efficacy of an artificial intelligence-based heart failure detection model for peripartum cardiomyopathy detection. We first built a deep-learning model for heart failure detection using retrospective data at the University of Tennessee Health Science Center. Cases were adult and nonpregnant female patients with a heart failure diagnosis; controls were adult nonpregnant female patients without heart failure. The model was then tested on an independent cohort of pregnant women at the University of Tennessee Health Science Center with or without peripartum cardiomyopathy. We also tested the model in an external cohort of pregnant women at Atrium Health Wake Forest Baptist. Key outcomes were assessed using the area under the receiver operating characteristic curve. We also repeated our analysis using only lead I electrocardiogram as an input to assess the feasibility of remote monitoring via wearables that can capture single-lead electrocardiogram data. The University of Tennessee Health Science Center heart failure cohort comprised 346,339 electrocardiograms from 142,601 patients. In this cohort, 60% of participants were Black and 37% were White, with an average age (standard deviation) of 53 (19) years. The heart failure detection model achieved an area under the curve of 0.92 on the holdout set. We then tested the ability of the heart failure model to detect peripartum cardiomyopathy in an independent University of Tennessee Health Science Center cohort of pregnant women and an external Atrium Health Wake Forest Baptist cohort of pregnant women. The independent University of Tennessee Health Science Center cohort included 158 electrocardiograms from 115 patients; our deep-learning model achieved an area under the curve of 0.83 (0.77-0.89) for this data set. The external Atrium Health Wake Forest Baptist cohort involved 80 electrocardiograms from 43 patients; our deep-learning model achieved an area under the curve of 0.94 (0.91-0.98) for this data set. For identifying peripartum cardiomyopathy diagnosed ≥10 days after delivery, the model achieved an area under the curve of 0.88 (0.81-0.94) for the University of Tennessee Health Science Center cohort and of 0.96 (0.93-0.99) for the Atrium Health Wake Forest Baptist cohort. When we repeated our analysis by building a heart failure detection model using only lead-I electrocardiograms, we obtained similarly high detection accuracies, with areas under the curve of 0.73 and 0.93 for the University of Tennessee Health Science Center and Atrium Health Wake Forest Baptist cohorts, respectively. Artificial intelligence can accurately detect peripartum cardiomyopathy from electrocardiograms alone. A simple electrocardiographic artificial intelligence-based peripartum screening could result in a timelier diagnosis. Given that results with 1-lead electrocardiogram data were similar to those obtained using all 12 leads, future studies will focus on remote screening for peripartum cardiomyopathy using smartwatches that can capture single-lead electrocardiogram data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.