Abstract
BackgroundAcute heart failure (AHF) with its high in-hospital mortality is an increasing burden on healthcare systems worldwide, and comparing hospital performance is required for improving hospital management efficiency. However, it is difficult to distinguish patient severity from individual hospital care effects. The aim of this study was to develop a risk adjustment model to predict in-hospital mortality for AHF using routinely available administrative data. MethodsAdministrative data were extracted from 86 acute care hospitals in Japan. We identified 8620 hospitalized patients with AHF from April 2010 to March 2011. Multivariable logistic regression analyses were conducted to analyze various patient factors that might affect mortality. Two predictive models (models 1 and 2; without and with New York Heart Association functional class, respectively) were developed and bootstrapping was used for internal validation. Expected mortality rates were then calculated for each hospital by applying model 2. ResultsThe overall in-hospital mortality rate was 7.1%. Factors independently associated with higher in-hospital mortality included advanced age, New York Heart Association class, and severe respiratory failure. In contrast, comorbid hypertension, ischemic heart disease, and atrial fibrillation/flutter were found to be associated with lower in-hospital mortality. Both model 1 and model 2 demonstrated good discrimination with c-statistics of 0.76 (95% confidence interval, 0.74-0.78) and 0.80 (95% confidence interval, 0.78-0.82), respectively, and good calibration after bootstrap correction, with better results in model 2. ConclusionsFactors identifiable from administrative data were able to accurately predict in-hospital mortality. Application of our model might facilitate risk adjustment for AHF and can contribute to hospital evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.