Abstract

In this work, a computationally efficient nonlinear model-based control (NMBC) strategy is developed for a trajectory-tracking problem in an acrylamide polymerization batch reactor. The performance of NMBC is compared with that of nonlinear model predictive control (NMPC). To estimate the reaction states, a nonlinear state estimator, an unscented Kalman filter (UKF), is employed. Both algorithms are implemented experimentally to track a time-varying temperature profile for an acrylamide polymerization reaction in a lab-scale polymerization reactor. It is shown that in the presence of state estimators the NMBC performs significantly better than the NMPC algorithm in real time for the batch reactor control problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.