Abstract

The paper presents the formulation of a two-phase system applied for reinforced soil media, which accounts for nonlinear behavior of matrix phase. In a two-phase material, the soil and inclusion are treated as two individual continuous media called matrix and reinforcement phases, respectively. The proposed algorithm is aimed to analyze the behavior of reinforced soil structures under operational condition focusing on geosynthetics-reinforced-soil (GRS) walls. The global behavior of such deformable structures is highly dependent to the soil behavior. By accounting for mechanical characteristics of the soil in GRS walls, a relatively simple soil model is introduced. The soil model is formulated in bounding surface plasticity framework. The inclusion is regarded as a tensile two-dimensional element, which owns a linear elastic-perfectly plastic behavior. Perfect bonding between phases is assumed in the algorithm. For validation of the proposed model, the behavior of several single element reinforced soil sa...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call