Abstract

The modeling of buoyancy driven turbulent flows is considered in conjunction with an advanced statistical turbulence model referred to as the BHR (Besnard-Harlow-Rauenzahn) k-S-a model. The BHR k-S-a model is focused on variable-density and compressible flows such as Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) driven mixing. The BHR k-S-a turbulence mix model has been implemented in the RAGE hydro-code, and model constants are evaluated based on analytical self-similar solutions of the model equations. The results are then compared with a large test database available from experiments and direct numerical simulations (DNS) of RT, RM, and KH driven mixing. Furthermore, we describe research to understand how the BHR k-S-a turbulence model operates over a range of moderate to high Reynolds number buoyancy driven flows, with a goal of placing the modeling of buoyancy driven turbulent flows at the same level of development as that of single phase shear flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call