Abstract

High performance simulation of low energy building requires ever more accurate descriptions of the systems under study to improve the building's performance. This paper describes a numerical model to simulate a single room, using a three-dimensional description of heat conduction in the envelope with environmental conditions that vary over short time-steps are described. The simulation considers the projection of solar radiation through a window onto interior walls. The indoor air temperature is assumed to be uniform. The temperature of the inner and outer surface of the walls are calculated at each time step using a variable-step solver. Validation of the model was carried out using experimental data from a low energy cell operating in a natural climate. A set of well-calibrated temperature sensors and an infrared camera have been used to accurately measure the cell's thermal behavior. Comparison between experimental data and numerical results for free varying conditions shows good agreement and the reliability of the model is proven.These validated results were found for a highly insulated cell. Future studies for different thermal mass cells, with new materials, will be realized to show the contribution of this model. Thermal comfort will also be studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.