Abstract

Ankle sprains are the most common sports injury. Gaining a better understanding of ankle mechanics will help improve current treatments, enabling a better quality of life for patients following surgery. In this paper, the development of a robotic system for ankle joint testing is presented. It is composed of an industrial robot, a universal force/torque sensor and bespoke holders allowing high repositioning of specimens. A specimen preparation protocol that uses optical tracking to register the ankle specimens is used. A registration technique is applied to define and calibrate the task related coordinate system needed to control the joint's degrees of freedom and to simulate standardised, clinical ankle laxity tests.Experiments were carried out at different flexion angles using the robotic platform. Optical tracking was used to record the resulting motion of the tibia for every simulated test. The measurements from the optical tracker and the robot were compared and used to validate the system. These findings showed that the optical tracking measurements validate those from the robot for ankle joint testing with interclass coefficients equal to 0.991, 0.996 and 0.999 for the anterior–posterior translations, internal–external and inversion–eversion rotations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call