Abstract

The hypophosphatemic (Hyp) mouse is a model for human familial hypophosphatemic rickets. To test the hypothesis that there is an osteoblastic defect in these animals, serum osteocalcin levels were measured in Hyp mice and their normal littermates. Furthermore, the effects of phosphorus deprivation, phosphorus loading, and 1,25-dihydroxyvitamin D3 administration on serum osteocalcin levels were examined. Osteocalcin was purified from mouse hindlimbs, and a polyclonal antibody to this material was produced in a goat. The antibody recognized native and decarboxylated mouse osteocalcin, but could not recognize osteocalcin from several other species. A RIA was developed which had a minimal detection limit of 0.4 nmol/liter (2.2 micrograms/liter) and half-maximal displacement at 2.7-3.3 nmol/liter (14.8-18.2 micrograms/liter). The intraassay coefficient of variation was 6.4%, while the interassay coefficient of variation was 12%. Dilutions of mouse serum samples varied by less than 15%. Analytical recovery was typically greater than 90%. Serum osteocalcin concentrations in Hyp and normal mice were shown to decrease with age. However, circulating osteocalcin levels in Hyp mice were higher than those in their normal littermates regardless of the age of the animal (P less than 0.001). One week of a high phosphorus diet resulted in an increase in serum phosphate in normal and Hyp mice, but serum osteocalcin concentrations were unaffected. On the other hand, dietary phosphorus deprivation for 4 weeks resulted in comparable hypophosphatemia in both Hyp and normal mice, and serum osteocalcin increased in both groups of animals. Intraperitoneal injection of 30 ng/day 1,25-dihydroxyvitamin D3 for 7 days resulted in a 215 +/- 33% increase in serum osteocalcin in normal animals, while the same regimen produced a 250 +/- 29% decrease in the Hyp mouse. Our results are consistent with the hypothesis that abnormal osteoblastic activity is present in Hyp mice. Furthermore, hypophosphatemia may be a general regulator of osteocalcin synthesis or secretion in the mouse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.