Abstract

Tin octoate is used as a catalyst in the synthesis of polydimethylsiloxane (PDMS), a room temperature vulcanizing (RTV) silicone rubber. This rubber is largely used in the medical field due to its great biocompatibility. In this framework, a high-speed and costless analytical method for the determination of stannic ions, Sn(IV), in the presence of stannous ions, Sn(II), has been developed. The separation of these two ions was carried out using differential pulse polarography (DPP). For this purpose, the tin species contents in the catalyst is quantitatively extracted under inert condition to avoid any changes in the ratio Sn(IV)/Sn(II). Polarography showed well-shaped oxidation and reduction peaks respectively at −650 and −860 mV for stannous ions. The peak of the stannic ion was well separated and appeared at −1210 mV. Many parameters such as extraction process, extraction time, pH, chelating agents and polarographic conditions were optimized. We have also demonstrated that no oxidation of the stannous ions occurred during the sample preparation. The dosing range considered in this study extends between 10 and 40 μg/mL, corresponding to 6.8% and 27.2% of the degradation product (Sn(IV)) in the catalyst, regarding to the sampling. Finally this method was successfully validated using the total error concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.