Abstract
The purpose of this study is to develop a predictive model to accurately predict the malignancy of solid solitary pulmonary nodule (SPN) by data mining methods. A training cohort of 388 consecutive patients with solid SPNs was used to develop a predictive model to evaluate the malignancy of solid SPNs. By using SPSS Modeler, we utilized logistic regression (LR), artificial neural network (ANN), k-nearest neighbor (KNN), random forest (RF), and support vector machines (SVM) classifiers to build predictive models. Another cohort of 200 consecutive patients with solid SPNs was used to verify the accuracy of the predictive model. Predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC). There was no significant difference in patients' characteristics between the training cohort and the validation cohort. The AUCs of LR, ANN, KNN, RF, and SVM models for the validation cohort were 0.874±0.0280 (P=0.605), 0.833±0.0351 (P=0.104), 0.792±0.0418 (P=0.014), 0.775±0.0400 (P=0.013), and 0.890±0.0323 (reference), respectively. The SVM algorithm had the highest AUC, and the best sensitivity (90.3%), specificity (80.4%), positive predictive value (93.9%), negative predictive value (71.2%) and accuracy (88.0%) for the validation cohort among the five models. Data mining by SVM might be a useful auxiliary algorithm in predicting malignancy of solid SPNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.