Abstract
BackgroundBladder cancer (BLCA) is the fifth most common type of cancer worldwide, with high recurrence and progression rates. Although considerable progress has been made in the treatment of BLCA through accurate typing of molecular characteristics, little is known regarding the various genetic and epigenetic changes that have evolved in stem and progenitor cells. To address this issue, we have developed a novel stem cell typing method.MethodsBased on six published genomic datasets, we used 26 stem cell gene sets to classify each dataset. Unsupervised and supervised machine learning methods were used to perform the classification.ResultsWe classified BLCA into three subtypes—high stem cell enrichment (SCE_H), medium stem cell enrichment (SCE_M), and low stem cell enrichment (SCE_L)—based on multiple cross-platform datasets. The stability and reliability of the classification were verified. Compared with the other subtypes, SCE_H had the highest degree of cancer stem cell concentration, highest level of immune cell infiltration, and highest sensitivity not only to predicted anti-PD-1 immunosuppressive therapy but also to conventional chemotherapeutic agents such as cisplatin, sunitinib, and vinblastine; however, this group had the worst prognosis. Comparison of gene set enrichment analysis results for pathway enrichment of various subtypes reveals that the SCE_H subtype activates the important pathways regulating cancer occurrence, development, and even poor prognosis, including epithelial-mesenchymal transition, hypoxia, angiogenesis, KRAS signal upregulation, interleukin 6-mediated JAK-STAT signaling pathway, and inflammatory response. Two identified pairs of transcription factors, GRHL2 and GATA6 and IRF5 and GATA3, possibly have opposite regulatory effects on SCE_H and SCE_L, respectively.ConclusionsThe identification of BLCA subtypes based on cancer stem cell gene sets revealed the complex mechanism of carcinogenesis of BLCA and provides a new direction for the diagnosis and treatment of BLCA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.